Разрешение сетчатки человеческого глаза

Разрешение зрения. Часть 1

Разрешение сетчатки человеческого глаза

Глаз человека имеет разрешающую способность 1 угловую минуту и расстояние наилучшего зрения 250 мм. Это доказали не только британские ученые. Поэтому примем эти данные за аксиому и займемся математикой.

1 минута – это различие точек или линий размером 0,1 мм (причем это для абсолютно здорового глаза (или, как любят говорить офтальмологи, — «со 100% зрением»). Еще есть разница в терминах.  В СССР (России) разрешающая способность меряется в линиях на мм, а в иностранной науке встречается термин «пара линий на мм (или дюйм)». Это одно и то же.

Просто мы учитываем только черные линии, расположенные на расстоянии друг от друга равной толщине линии, а наши коллеги считают одну линию черную и вторую белой. По существу это одно и то же. Иногда вместо линий говорят точки, особенно в англоязычной науке – dpi (drop per inch). И это то же самое.

Традиционно в полиграфии применяется измерение в точках на дюйм.

Итак, при стопроцентном зрении вы можете увидеть 10 линий на мм или 254 линии на дюйм. Больше никак, только с увеличительным стеклом. Поэтому за эталон печати взято разрешение от 240 до 300 точек на дюйм. Это требование к файлам всех полиграфистов.

Однако, отодвинувшись  от изображения на расстояние 500 миллиметров (полметра), вы уменьшите угол зрения примерно в два раза и для вас приемлемым разрешением печати станет 5 линий на мм или 120 dpi. Для рассматривания что-нибудь с расстояния 1 метр достаточно 75-72 линий на дюйм.

А на 10 метрах и 7 dpi будет достаточно.

Процесс зрения человека – это процесс сканирования поверхности изображения или пространства изображения. При этом сам процесс сканирования можно разбить на три ступени по антропологическим признакам.

Первый этап – двигаются только глаза. Глаз, как известно из физиологии спокойно и безболезненно (комфортно) двигается на 30 градусов по горизонтали и 17 градусов по вертикали.

Если человек попытается повернуть глаза на больший уровень, то ощутит боль в глазных мышцах. Боль – защитная реакция организма, побуждающая изменить причины дискомфорта.

И человек инстинктивно переходит ко второму этапу.

Второй этап – поворот и кивание всей головы на крайних значения угла комфортного зрения.

Вместе с поворотом глаз человек при этом обхватывает угол примерно (зависит от индивидуальных особенностей конституции тела) в 90 – 100 градусов как по горизонтали, так и по вертикали.

Причем кивание менее энергозатратно для человека, чем повороты. Поэтому для восприятия легче рассматривать вытянутое по вертикали изображение, чем растянутое по горизонтали.

Третий этап – на этом этапе к движениям головы и глаз присоединяются уже повороты и наклоны корпуса. Сначала разворачивается плечевой пояс, потом тазобедренный. С помощь поворота корпуса человек может охватить  угол в 180 градусов перед собой. Далее уже надо менять полную ориентацию корпуса в пространстве.

Теперь рассчитаем необходимое и достаточное разрешение изображения по горизонтали с учетом эргономических критериев.

На расстоянии наилучшего зрения в 250 миллиметров комфортный размер изображения или текста составляет 135 мм – это размер страницы в книгах. Мы читаем быстро сканируя по горизонтали и более медленно по вертикали.

Поэтому книги по вертикали больше. Если страница в книге или журнале больше чем 135 мм, то текст делится на две и более колонок. Исключения составляют книги, которые читаются на большем расстоянии.

К примеру — Богослужебные.

Пропорции отношения комфортных размеров по вертикали и горизонтали составляет 16:9! Не просто так это было выбрано и стандартизовано.

Какой максимальный размер экрана планшета для комфортного индивидуально чтения? Т.е. его большая сторона должна быть 135 мм. Или его диагональ должна быть примерно 155 мм , что составляет 6,5 дюймом (или как любят немножко привирать производители – 7 дюймов). То же этот размер не просто так появился.

Планшет в 10 дюймов по диагонали имеет горизонтальный размер 124 мм и на нем удобно читать вертикальные тексты.

Конечно, приведенные размеры будут отличаться от реальных, так как производители не всегда выдерживают правильные пропорции, да и размеры дюймов у тех же китайцев, не известно с какого эталона взяты.

https://www.youtube.com/watch?v=nJbs89TFFYQ

Теперь возьмем и просчитаем комфортное расстояние для просмотра телевизоров. Результаты сведены в таблицу.

Диагональгоризонталь в смвертикаль в смРастояние до экрана в метрах
дюймысантиметры
215346260,87
246153301,00
276960341,12
307666371,24
328171401,33
389784471,58
4010288501,66
4210793521,74
50127110622,07
55140122692,28
60152133752,49
65165144812,69
70178155872,90
75191166943,11
802031771003,32
852161881063,52
902291991123,73
1002542211254,15
1082742391354,48

Если сидеть ближе, то придется мотать туда-сюда шеей. А потом жаловаться: — «Что-то шея болит. Продуло, наверно….»

Но все понятия разрешения глаза применимы для статических изображений. Во второй части статьи мы рассмотрим вопросы работы глаза при концентрации внимания на значимых зонах и разрешение глаза при динамических изображениях. Т.е. выясним:  какого качества должен быть кинофильм.

Источник: http://shtandel.ru/2015/resolution-part-1/

Фотографические параметры человеческого глаза

Разрешение сетчатки человеческого глаза
?

glowlight (glowlight) wrote,
2007-05-08 22:31:00 glowlight
glowlight
2007-05-08 22:31:00 Categories:

  • Наука
  • Техника
  • Фотография
  • Cancel

У любого человека, более-менее знакомого с фототехникой и с любовью к познанию окружающего мира, наверное, не раз возникал в голове вопрос, как соотносятся человеческий глаз и современный цифровой фотоаппарат по своим параметрам? Какова чувствительность человеческого глаза, фокусное расстояние, относительное отверстие и прочие интересные мелочи. О которых я вам сегодня и расскажу:)Итак, облазив пол интернета я пришёл к выводу, что до сих пор не написано ни одной статьи на русском языке, которая бы поставила точку в описании человеческого глаза по техническим параметрам или покрыла тему более-менее плотно.

Фотографические параметры человеческого глаза и некоторые особенности его строения

Чувствительность (ISO) человеческого глаза динамически изменяется в зависимости от текущего уровня освещения в пределах от 1 до 800 единиц ISO. Время полной адаптации глаза к тёмной обстановке занимает около получаса.

Количество мегапикселей у человеческого глаза составляет порядка 130, если считать каждый фоточувствительный рецептор за отдельный пиксель.

Однако центральная ямка (fovea), являющаяся наиболее чувствительным к свету участком сетчатки и отвечающяя за ясное центральное зрение имеет разрешение порядка одного мегапикселя и охватывает около 2 градусов обзора.

Фокусное расстояние равняется ~22-24мм.

Размер отверстия (зрачка) при открытой радужной оболочке равно ~7мм.

Относительное отверстие равняется 22/7 = ~3.2—3.5.

Шина передачи данных от одного глаза до мозга содержит порядка 1.2 миллиона нервных волокон (аксонов).

Пропускная способность канала от глаза до мозга составляет около 8-9 мегабит в секунду.

Углы обзора одного глаза составляют 160 x 175 градусов.

В сетчатке глаза человека содержится приблизительно 100 миллионов палочек и 30 миллионов колбочек. или 120 + 6 по альтернативным данным.

Ко́лбочки — один из двух типов фоторецепторных клеток сетчатки глаза. Свое название колбочки получили из-за конической формы. Их длина около 50 мкм, диаметр — от 1 до 4 мкм.Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.

Различают три вида колбочек, по чувствительности к разным длинам волн света (цветам). Колбочки S-типа чувствительны в фиолетово-синей, M-типа — в зелено-желтой, и L-типа — в желто-красной частях спектра. Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) даёт человеку цветное зрение.

Длинноволновые и средневолновые колбочки (с пиками в сине-зелёном и жёлто-зелёном) имеют широкие зоны чуствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.

В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.Па́лочки (англ. rod cells) — один из двух типов фоторецепторных клеток сетчатки глаза, названый так за свою цилиндрическую форму.

Палочки более чувствительны к свету и, в человеческом глазе, сконцентрированы к краям сетчатки, что определяет их участие в ночном и периферийном зрении.

В человеческом глазе, приспособленном, преимущественно, к дневному свету, при приближении к середине сетчатки палочки постепенно вытесняются, более подходящими для дневного света, колбочками (второй вид клеток сетчатки) и в центральной ямке не встречаются вовсе. У животных ведущих преимущественно ночной образ жизни (например, кошек) наблюдается противоположная картина.

Чувствительность палочки достаточна, чтобы зарегистрировать попадание одного-единственного фотона, в то время как колбочкам необходимо попадание от нескольких десятков, до нескольких сотен фотонов.

Кроме того, к одному интернейрону, собирающему и усиливающему сигнал c сетчатки, как правило, подсоединяются несколько палочек, что дополнительно увеличивает чувствительность за счет остроты восприятия (или разрешения изображения).

Такое объединение палочек в группы делает периферийное зрение очень чувствительным к движениям и отвечает за феноменальные способности отдельных индивидов к зрительному восприятию событий лежащих вне угла их зрения.Из-за того, что все палочки используют один и тот же светочувствительный пигмент (вместо трех, как у колбочек), они в малой степени или совсем не участвуют в цветном зрении.Также, палочки реагируют на свет медленнее, чем колбочки — палочка реагирует на раздражитель в течение порядка ста миллисекунд. Это делает ее более чувствительной к меньшим количествам света, но снижает способность к восприятию быстротекущих изменений, таких как быстрая смена образов.

Палочки воспринимают свет, преимущественно, в изумрудно-зеленой части спектра, поэтому в сумерках изумрудный цвет кажется ярче, чем все остальные.

Однако следует помнить, что строение фотоаппарата отличается от строения глаза. При съёмке фотоаппаратом или видеокамерой, изображение разбивается на кадры. Каждый кадр “снимается” с матрицы в определенный момент времени, т.е.

в процессор попадает готовое изображение.

В то время, как человеческий глаз отсылает в мозг постоянный видеопоток без разбиения по кадрам.

Поэтому можно неверно истолковать некоторые параметры, если не разбираться в вопросе более-менее досканально.

В итоге можно сказать, что по чувствительности человеческий глаз догнала почти вся mid-end фототехника, а high-end так и вообще перегнала во много раз.

Однако уровень шумов у наиболее распространенной mid-end техники гораздо выше, чем у сетчатки, а качество изображения хуже на порядок.

Так же сетчатка отличается от фотосенсоров тем, что чувствительность на ней меняется для каждого отдельного фоторецептора в зависимости от освещения, что позволяет добиться очень высокого динамического диапазона итоговой картинки.

Сенсоры с подобной технологией уже разрабатываются многими компаниями, но пока ещё не выпускаются.На данный момент ещё не изобретено устройство с размерами человеческого глаза, сопоставимое с ним ни по оптическим, ни по техническим параметрам.Использованные источники:

http://www.clarkvision.com/imagedetail/eye-resolution.html

Источник: https://glowlight.livejournal.com/93385.html

Каково разрешение человеческого глаза (или сколько мегапикселей мы видим в каждый отдельный момент времени)

Разрешение сетчатки человеческого глаза

Очень часто фотографы, а иногда и люди из других специальностей, проявляют интерес к собственному зрению. Вопрос, казалось бы, простой на первый взгляд… можно погуглить, и всё станет ясно.

Но практически все статейки в сети дают либо «космические» числа — вроде 400-600 мегапикселей (Мп), либо это и вовсе какие-то убогие рассуждения.

Поэтому постараюсь кратко, но последовательно, чтобы никто ничего не упустил, раскрыть эту тему.

Начнём с общей структуры зрительной системы

  1. Сетчатка
  2. Зрительный нерв.
  3. Таламус(ЛКТ).
  4. Зрительная кора.

Сетчатка состоит из трёх типов рецепторов: палочки, колбочки, фоторецепторы(ipRGC).

Нас интересуют только колбочки и палочки, так как они создают картинку.

  • Колбочки воспринимают синий, зелёный, красный цвета.
  • Палочки формируют яркостную составляющую с наибольшей чувствительностью в бирюзовом цвете.

Колбочек в среднем 7 млн, а палочек — около 120 млн.

Практически все колбочки расположены в центральной ямке FOVEA (жёлтое пятно в центре сетчатки). Именно fovea отвечает за самую чёткую область зрительного поля.

Для лучшего понимания проясню – fovea покрывает ноготь на мизинце на вытянутой руке, разрешающий угол примерно 1,5 градуса. Чем дальше от центра fovea, тем более размытую картинку мы видим.

Плотность распределения палочек и колбочек в сетчатке.

Палочки отвечают за восприятие яркости/контраста. Наибольшая плотность палочек — примерно по-середине между центральной ямкой и краем сетчатки.

Интересный факт — многие из вас замечали мерцание старых мониторов и телевизоров при взгляде на них «боковым зрением», а когда смотрите прямо, то всё отлично, было, да?) Это происходит по причине наибольшей плотности палочек в боковой части сетчатки. Чёткость зрения там паршивая, зато чувствительность к изменению яркости — самая высокая.

Как раз эта особенность и помогала нашим предкам быстро реагировать на самые мелкие движения на периферии зрения, чтобы тигры не пооткусывали им задницы)

Итак, что мы имеем — сетчатка содержит суммарно около 130 Мп. Ура, вот и ответ! Нет… это только начало и цифра далека от верного значения.

Вернёмся снова к центральной ямке fovea.

Колбочки в самой центральной части ямки «umbo» имеют каждая свой аксон (нервное волокно).

Т.е. эти рецепторы, можно сказать, самые приоритетные — сигнал от них почти напрямую поступает в зрительную кору мозга.

Колбочки, расположенные дальше от центра, уже собираются в группы по несколько штук — они называются «рецептивные поля».

Например, 5 колбочек соединяются с одним аксоном, и дальше сигнал идёт по зрительному нерву в кору.

На этой схеме как раз показан случай такой группировки нескольких колбочек в рецептивное поле.

Палочки, в свою очередь, собираются в группы по несколько тысяч — для них важна не резкость картинки, а яркость.

Итак, промежуточный вывод:

  • каждая колбочка в самом центре сетчатки имеет свой аксон,
  • колбочки на границах центральной ямки собираются в рецептивные поля по несколько штук,
  • несколько тысяч палочек соединяются с одним аксоном.

Здесь начинается самое интересное — ~130 миллионов рецепторов превращаются за счёт группировки в 1 миллион нервных волокон (аксонов).

Да, всего один миллион!

Но как же так?!

В фотиках матрицы по 100500 мегапикселей, а наши глаза всё равно субъективно круче!

Сейчас и до этого доберёмся) Значит, 130 Мп превратились в 1 Мп, и мы каждый день смотрим на мир вокруг… хорошая графика, не так ли?)

Есть пара инструментов, помогающих нам видеть мир вокруг почти постоянно почти чётким:

1.Наши глаза совершают микро- и макросаккады — что-то типа постоянных перемещений взгляда.

Макросаккады — произвольные движения глаз, когда человек рассматривает что-то. В это время происходит «буферизация» или слияние соседних изображений, поэтому мир вокруг нам кажется чётким.

Микросаккады — непроизвольные, очень быстрые и мелкие (несколько угловых минут) движения.

Они необходимы для того, чтобы рецепторы сетчатки банально успевали насинтезировать новых зрительных пигментов — иначе поле зрения просто будет серым.

2.Ретинальная проекция

Начну с примера — когда мы читаем что-то с монитора и постепенно крутим колёсико мышки для перемещения текста, то текст не смазывается… хотя должен) Это очень занятная фишка — здесь в работу подключается зрительная кора.

Она постоянно держит в буфере картинку и при резком смещении объекта/текста перед зрителем быстро смещает эту картинку и накладывает на реальное изображение. А как же она знает, куда смещать? Очень просто — Ваше движение пальцем по колёсику уже изучено моторной корой до миллиметров… Зрительная и моторная области работают синхронно, поэтому Вы не видите смаза. А вот когда кто-то другой крутанёт колёсико….:)

Зрительный нерв

С каждого глаза выходит зрительный нерв плотностью ~1 Мп (от 770 тысяч до 1,6 млн пикселей — кому как повезло), дальше нервы с левого и правого глаз пересекаются в оптической хиазме — это видно на первой картинке — происходит смешение аксонов примерно по 53% с каждого глаза.

Потом два этих пучка попадают в левую и правую части таламуса – это такой «распределитель» сигналов в самом центре мозга.

В таламусе происходит, можно сказать, первичная «ретушь» картинки — повышается контраст.

Далее сигнал из таламуса поступает в зрительную кору.

И здесь происходит невероятное количество процессов, вот основные:

  • слияние картинок с двух глаз в одну — происходит что-то типа наложения (1 Мп так и остаётся),
  • определение элементарных форм — палочек, кружочков, треугольников,
  • определение сложных шаблонов — лица, дома, машины и т.д.,
  • обработка движения,
  • покраска картинки. Да, именно покраска, до этого в кору просто поступали аналоговые импульсы разной частоты,
  • ретушь слепых зон сетчатки — без этого мы бы видели постоянно перед собой два тёмно-серых пятна размером с яблоко,
  • ещё уйма «фотошопа»,
  • и наконец, вывод финального изображения — то, что вы и называете зрением — феномен зрения.

Так почему же, спросите вы, мы не видим отдельных пикселей? Картинка должна быть совсем убогая, как на старой приставке!

В этом и заключается суть феноменологии зрения — у вас ОДНА зрительная система. Вы не можете посмотреть на свою же картинку со стороны.

Если бы человек обладал двумя зрительными системами и по желанию мог переключиться с системы 1 на систему 2 и оценить как работает первая система — тогда да, ситуация была бы печальная 🙂

Но имея одну зрительную систему ВЫ сами и являетесь этой картинкой, которую видите!

Зрительная кора сама осознаёт процесс зрения. Перечитайте это несколько раз.

При травме первичной зрительной коры человек не понимает, что он слеп — это называется анозогнозия, т.е. картинку он совершенно не видит, но при этом может нормально ходить по коридору с препятствиями(первая ссылка в списке).
Здесь я сделаю небольшое отступление и дам краткое пояснение, почему же свет, проходя через роговицу, хрусталик, стекловидное тело и все слои нейронов сетчатки не искажается так сильно, как мы предполагаем. Если сравнивать чистоту и степень аберраций, то нашему глазу далеко до хорошей оптики в современной фото-видео технике.
Всё дело в рецептивных полях — РП (имеются ввиду поля в сетчатке, ЛКТ и отделе коры V1). Одна из задач РП — увеличение микро-контраста изображения. Сетчатка получает слегка размытую картинку, а после этого в процессе нескольких этапов повышения контраста мы видим вполне детализированное изображение. Сама суть увеличения контраста состоит в сужении градиентов, как на примере ниже:

Завершая эту, надеюсь, краткую и понятную статью, хочу напомнить — мы все имеем картинку в ~1 Мп… живите с этим 🙂

Литература:

Дэвид Хьюбел — «Глаз, мозг, зрение» Стивен Палмер — «От фотонов к феноменологии» Баарс Б., Гейдж Н. — «Мозг, познание, разум» Джон Николлс, А. Мартин, Б. Валлас, П. Фукс — «От нейрона к мозгу» Майкл Газзанига — «Кто за главного?»

Ссылки:

https://www.cell.com/fulltext/S0960-9822(08)01433-4

https://iovs.arvojournals.org/article.aspx?articleid=2161180
https://en.wikipedia.org/wiki/Fovea_centralis
https://en.wikipedia.org/wiki/Photoreceptor_cell

UPD: поступило заметное количество комментариев/вопросов про цветоощущение. Если эта тема интересна — напишите тег #цветоощущение — займусь созданием статьи.

UPD:UPD: Статья про цвет

  • зрение
  • мозг
  • нейробиология

Хабы:

Источник: https://habr.com/ru/post/468653/

Каковы пределы человеческого зрения?

Разрешение сетчатки человеческого глаза

Адам Хадхази BBC Future

Правообладатель иллюстрации SPL

Корреспондент BBC Future рассказывает об удивительных свойствах нашего зрения – от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам – световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

(Другие статьи сайта BBC Future на русском языке)

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. “У любых видимых нами объектов есть определенный “порог”, ниже которого мы перестаем их различать”, – говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета — пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации SPL Image caption Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток – палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении – например, ночью (ночное зрение).

Содержащиеся в светочувствительных клетках рецепторы – опсины – поглощают электромагнитную энергию фотонов и производят электрические импульсы. Эти сигналы по оптическому нерву попадают в мозг, который и создает цветную картину происходящего вокруг нас.

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа — за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. “Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины”, – говорит Лэнди.

Правообладатель иллюстрации Thinkstock Image caption Не весь спектр полезен для наших глаз…

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем – спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией — отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) – способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны.

Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

“Точно подсчитать, сколько мы видим цветов, не представляется возможным, – говорит Кимберли Джемесон, научный сотрудник Калифорнийского университета в Ирвайне. – Некоторые видят больше, некоторые – меньше”.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин.

В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов.

(У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек – они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации SPL Image caption После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. “Человек способен увидеть один-единственный фотон, – говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла”.

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

“Единственное, что нужно глазу, чтобы что-то увидеть, – это определенное количество света, излученного или отраженного на него объектом, – говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов”.

Правообладатель иллюстрации Thinkstock Image caption Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации Thinkstock Image caption Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути.

Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца.

(Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны.

Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора — в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации SPL Image caption Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов – таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. “По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз”, – говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.
Правообладатель иллюстрации Thinkstock Image caption В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

Прочитать оригинал этой статьи на английском языке можно на сайте BBC Future.

Источник: https://www.bbc.com/russian/science/2015/08/150804_vert_fut_limits_of_human_vision

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.